一方、プロセスマイニングでは、ITシステムから業務に関わる操作履歴をイベントログとして抽出し、ツールにアップロードすれば自動的にフローチャートを作成してくれます。このことから、プロセスマイニングは初期のころ、「ABPD(Automated Business Process Discovery)」、すなわち、自動化された業務システム発見」とも呼ばれていたのです。
プロセス発見とは、ITシステムから抽出したイベントログに基づいて、一定のアルゴリズムによって、対象プロセスをプロセスモデル、すなわち業務の流れを表すフローチャートを再現します。このプロセスモデルは、実際のシステム操作履歴を反映したものですので、「現行プロセスモデル(as is プロセスモデル)」と呼ばれます。
Position and Role of COE – Center of Excellence for Continuous Process Improvement English follows Japanese. Before proofread.
今回は、継続的プロセス改善を目的としたDXの推進、デジタルツインの実現を主導する特任組織ともいえる「COE(Center of Excellence)、以降COE」の位置づけや役割について解説します。
COEに対応する日本語の適切な表現はありません。そのまま「COE」と呼ばれています。欧米ではCOEを設立する企業が増えています。日本企業でもCOEが設立されているところがありますが、部署としての役割は同じでも、名称としては「DX推進部」や「BPR(Business Process Re-engineering)部」といった名称になっていることが多いようです。
また、デジタルツイン、正確には「DTO(Digital Twin of an Organization)」は、実際の業務をそのままバーチャルなモデル(=デジタルツイン)としてPCディスプレイ上に再現することで、業務プロセス上の様々な問題点を発見しやすくしたり、また日々の業務における問題発生をリアルタイムにモニタリングし、即時の是正を図ろうとするものです。
Position and Role of COE – Center of Excellence for Continuous Process Improvement
This article explains the role and position of the Center of Excellence (COE), which can be regarded as a specially designated organization that promotes DX for the purpose of continuous process improvement and leads the realization of digital twin.
In Europe and the United States, an increasing number of companies have established a COE. Some Japanese companies have also established a COE, and although the role of the department is the same, it is often called “DX Promotion Department” or “BPR (Business Process Re-engineering) Department”.
What is DX and Digital Twin?
“Digital Transformation” (DX) is primarily focused on using technology to significantly transform your business model.
It doesn’t mean simply replacing analog operations with digital tools. It is about leveraging technology to transform the business and organizational structures and adapt to the socio-economic environment that is changing dramatically due to digital technology.
The digital twin, or more precisely, the Digital Twin of an Organization (DTO), reproduces actual business operations as a virtual model (i.e., digital twin) on a PC display, making it easier to discover various problems in business processes and also to identify problems in the daily The purpose of the COE is to monitor the occurrence of problems in the company’s operations in real time and attempt to take immediate corrective action.
The role of the COE
In recent years, as every aspect of the socio-economy and every aspect of business activity has become more digital, the old ways of working can no longer survive. We need to push forward with enterprise-wide DX and continuous process improvement through DTO.
The COE, a specially designated unit within the company, leads the way in promoting DX and DTO implementation.
The COE is positioned between the IT department and the business units such as procurement, manufacturing, logistics, sales, marketing, service, and accounting and finance, and coordinates a variety of activities to ensure that the two departments work well together.
The COE helps the incumbent get the most out of the latest technologies and tools so that they can deliver results. On the other hand, the COE supports the IT department by absorbing the needs of the business units and translating them into the required specifications for the development and improvement of the system.
Key Members of the COE
The COE for the promotion of DX, which is based on the use of technology, is data-driven, i.e., it discovers and corrects problems through the collection and analysis of various data related to the business. Therefore, a DX project is launched together with the business units, and the following experts belonging to the COE are appointed as project members. The following experts belonging to the COE are appointed as project members, and they will also participate in various DX projects of the operational divisions as necessary.
Business Analyst
Knowledge of both business and IT, and plans and directs the deployment of business process improvement measures using IT. Proficient in BA, BPM, Lean, Six Sigma, PMC (Process Model Canvas), etc. as tools for implementing improvement measures.
Process Analyst
Using process and task mining tools, we discover problems based on data analysis, perform root cause analysis, and present insights that lead to improvement measures.
Data Scientist
The successful candidate will be responsible for data pre-processing tasks such as data extraction and data cleaning from the IT system in collaboration with the IT department engineers.
TOOLBOX
Various knowledge systems and tools must be used to understand the current situation, identify problems, analyze the root cause, and come up with improvement measures or design new business processes.
Typical examples are as follows;
BA(Business Analysis)
BPM (Business Process Management)
Lean Management
Six Sigma
PMC (Process Model Canvas)
As mentioned above, these tools are something business analysts should be equipped with.
In addition, IT tools and technologies for improvement include the following.
Artificial Intelligence (AI)
BPMS (Business Process Management System)
Process Mining
Task Miining
RPA
The members of the COE are expected to deepen their knowledge of these technologies and tools, and also to keep up with the latest developments in the fast-moving technologies.
属性項目は、業務プロセス上の問題(非効率性やボトルネックなど)を特定した際、それは、特定のリソースや顧客において起こりやすいかどうか、といった深堀りを行う「根本原因分析」において活用するものです。また、「活動基準原価計算(ABC: Activity Based Costing)」などに基づいて、処理費用の算出が可能であれば、属性項目として処理費用を追加することで、プロセスに係るコスト視点での分析が可能となります。
このように、プロセスマイニングとデータマイニング・AI、BPMはお互いに補完しあえる関係にあると言えます。プロセスマイニングのゴッドファーザー、Wil van der Aalst教授は、「プロセスマイニングは、データマイニングとBPMをつなぐ橋である」と述べられていますが、まさに、BPMの取り組みにおいて、プロセスに特化したデータマイニングとしての「プロセスマイニング」は大きな役割を果たしていくと思われます。
さて、プロセスマイニング分析後に発見した問題を解決するための施策としてのソリューションには、まずRPA(Robotic Process Automation)によるタスク自動化が挙げられます。また、プロセス単位で一定の業務手順を自動化するためにはビジネスプロセスマネジメントシステム(BPMS)の採用が有効でしょう。また、業務を遂行するためのリソース最適化のために、アウトソーシングサービス(BPO)の活用も検討に値するでしょう。
また、実際の導入検討に関わる主な部署は、業務プロセス改善やDX推進の主体となることの多い経営管理部門や、BPRチームです。企業によっては、CoE(Center of Excellence)と呼ばれる専任部署を設置していることがありますが、CoEもまたプロセスマイニングを活用する担当部署となることが多いでしょう。
プロセスマイニングツールはITとしての側面もあるため、情報システム部門が担当部署となる場合もあり、キーパーソンはCIO(Chief Information Officer)です。
同社では、プロセスマイニングを単なる問題発見ツールとしてだけでなく、実際の業務プロセスが可視化できることで、関係するメンバーが「すごい(Sense of Excitement)」と思ってもらうこと、また、非効率性やボトルネックが一目瞭然となることから「すぐに改善しなければ(Sense of Urgency)」という気持ちを喚起できる仕掛け、すなわちプロセス改善を着手させ(Initiator)、促進する(Katalysator)ことのできる有益なアプローチとして活用しています。
グローバルに展開する保険会社、AIGでは様々な業務プロセス改善に取り組んでいます。特に、米国AIGの”Data-Driven Process Optimization”と呼ばれる部署では、プロセスマイニング、シミュレーション、BIを組み合わせることで改善成果を積み重ねています。
Data-Driven Process Optimization部署では、プロセス改善の一連の手順を「プロセス風洞(Process Wind Tunnel)」と呼んでいます。自動車や航空機、建築物などの設計においては、風洞に模型を置いて風の流れ等を測定する「風洞実験」を行います。同様に、プロセスの改善にあたって、シミュレーションによる改善成果の予測を行った上で改善施策に展開するという手順を踏んでいるのです。
さて、プロセスマイニングに取り組む同社が今回、事例として取り上げたのは部品補修(Parts Repair)のプロセスです。プロセスマイニング分析によって発見された業務遂行上の問題点の改善には、リーンマネジメントの考え方がベースにありますが、さらにボトルネックに関しては制約理論(Theory of Constraints)を適用した点が特徴的です。
プロセスマイニング分析結果から、部品補修プロセスの総所要時間(ターンアラウンドタイム、またはスループットと呼ぶ)を長くしている大きなボトルネックは3カ所ありました。すなわち、「検査(Inspection)」、「提案と承認(Proposal and approval)」、「修繕と認証(Repair and certification)」です。
各工程では、大きなユニットの60-80%が処理待ちとなっており、このため6日~12日ほど想定よりも時間が掛かっていました。どれも解決すべきボトルネックではありましたが、どの工程から着手するか、優先順位をつけるために同社では「制約理論(Theory of Constraints)」を適用しました。制約理論は、プロセス改善を目的としてボトルネックの解消に取り組むためのアプローチです。そして、制約理論に基づき、「提案と承認(Proposal and approval)」からボトルネック解消のための施策を開始したのです。