プロセスマイニング最新機能群と課題、今後の進化の方向性

direct follows graphs

今回の記事では、2021年夏時点における、プロセスマイニングのテクノロジーやソリューションに焦点を当て、機能、課題、今後の進化についてお伝えします。

1 プロセスマイニングの最新機能群

プロセスマイニングは、テクノロジーやツールの側面に関心が行きがちであるが、その本質は、データ分析の理論体系・方法論(Discipline)である。実際、プロセス“マイニング”という言葉でわかるように、データマイニングの一類型と考えることができる。ただし、あらゆる事象を分析対象とする幅広い概念のデータマイニングと異なり、文字通り「プロセス」を分析対象とするのがプロセスマイニングである。その基本となる用途は「プロセスの可視化」であり、プロセスが可視化されたことによって、対象プロセスがはらむ問題点の発見が容易になる。結果として、プロセス改善の取り組みに大きな役割を果たすことができる。

1.1  現在の主要機能

さて、プロセスマイニングは、前述したように「プロセスの可視化」の方法論の確立とツール開発からその研究がスタートしている。それは、業務遂行に使用するITシステムから抽出されたデータに基づき、業務手順を示すフローチャートを自動的に作成する機能であり、「プロセス発見(Process Discovery)」と呼ばれる。その後、研究の進展、ツールの高度化に伴い、様々な機能が実装されてきた。以下は、現在のプロセスマイニングツールの多くが実装している主な分析機能である。

・プロセス発見:


業務手順を自動的にフローチャート化し、作業頻度や所要時間などを算出する

・適合性検査:


データに基づき発見された現状プロセス(as-is)と標準プロセス(to-be)との比較分析を行い、現状プロセスの逸脱を抽出する

・ダッシュボード:


対象プロセスについて、様々な切り口から集計・分析した結果を各種グラフや図でビジュアルに表示する(BIツールと同等)

1.2 最新機能群

さらに、近年では、最先端のプロセスマイニングツールでは、次のような最新機能群が搭載され始めている。

・ビジネスルールマイニング:


 対象プロセスにおいて、フローの分岐(意思決定ノード)が発生している箇所がある場合、その分岐を決定している基準=ビジネスルールをデータに基づいて自動発見する

・シミュレーション(What-If分析)


 プロセス発見機能によって可視化された現状プロセスについて、一部のタスクを排除したり、あるいは自動化したりすることで、どの程度の改善効果が期待できるかをシミュレートする

・運用サポート


 現在仕掛中の案件について、業務遂行に関わるデータをリアルタイムに吸い上げ、業務の逸脱を探知したり、将来の問題発生を予測したりして、担当者にアラートを出す、また最善手を提案する、あるいは自動的に改善施策を実行する。

上記3つの最新機能のうち、ビジネスルールマイニング、およびシミュレーションは、既に完了した案件、すなわち過去データを分析対象としているが、運用サポートは、未完了の案件に関わるデータを逐次処理し、円滑な業務遂行を支援することが主眼である。この意味で、運用サポートは、分析の方法論の枠を超えたITソリューションの一形態とも言えるだろう。このため、プロセスマイニング業界最大手のセロニス社では、当該機能を「EMS(Execution Management System)」と呼んでいる。


2 プロセスマイニングが克服すべき課題

2.1 データ前処理の難しさ

データマイニングでは、全体の所要時間の約8割がデータの収集・抽出、クリーニングといったデータ前処理に費やされると言われる。プロセスマイニングでも同様である。多様なITシステムから抽出された数十~数百に及ぶデータファイルを適切に統合し、抜け漏れ、文字化けなどのダーティなデータを補正し、ツールに投入して分析可能な「データセット」を作り上げる労力は大きい。プロセスマイニングにおけるデータ前処理の難度を高くしている要因としては、データの抽出元が各種業務システムであることから、業務システムへの理解が必要であること、また、業務プロセス改善に資する分析結果を導くためのデータセットを作成するためには、業務自体への理解、また業務改善手法にもある程度通暁している必要があることが挙げられる。

2.2 ツールの分析品質

分析品質については2つの課題を述べたい。一つはDFGs(Directly Follows Graphs)の限界、もうひとつは、Convergence/Divergence問題である。

2.2.1 DFGsの限界

プロセスマイニングの基本機能である「プロセス発見」は、当初、ペトリネットがベースになっていたが、より現実に近いフローチャートを再現するために、様々なアルゴリズムが開発されてきている。ただ、業界有識者の話によれば、現在実用化されているプロセスマイニングツールのほとんどは、ファジーマイナーと呼ばれるアルゴリズムに基づいたもの(各社独自の改善は行っていると思われる)であると言われている。
同アルゴリズムは、一般にDFGs(Directly-follows Graphs)と呼ばれる。ペトリネットや、また業務手順をフローチャートとして記述するための世界標準であるBPMN(Business Process Modeling and Notation)と異なり、ノードとノードが直接(Directly)結びつけられたフローチャートがDFGsである。すなわち、分岐ノードが描かれないため、このアルゴリズムでは、どこでどのような分岐が発生しているのか、具体的には、排他的(OR)なのか、並行的(AND)なのか、といったことが把握できない。このため、現状のプロセスを自動的に再現するとはいっても、分岐が明確でない不完全なものになるというのが現実である。もちろん、これについては、BPMN形式のフローチャートへの自動変換や、前述したビジネスルールマイニングの採用などの機能改善が行われてきている。

図1 Petri net、BPMN、Fuzzy Minerのフロー図例
上図でわかるように、DFGsであるFuzzy Minerには、Petri netやBPMNのような分岐ノードが存在しないため、同じプロセスの表現でありながら、Fuzzy Minerでは分岐のルールを判別することができない。

2.2.2 Convergence/Divergence問題

プロセスマイニングでは、対象プロセスで処理される案件に対して行われる各アクティビティを束ねて、フローチャートを描くために、「案件ID」、「アクティビティ(処理内容)」、およびタイムスタンプの3項目が必須である。例えば、請求書処理プロセスであれば、各請求書に付番されている個別の請求書番号、そして、その請求書に対して行われる「受領」、「確認」、「承認」、「支払い」などのアクティビティをタイムスタンプとともにITシステムから抽出することになる。


 実際のプロセスにおいてしばしば直面するのは、案件IDがひとつではないという点である。具体例を示そう。図2は、エンジニアリング会社の受注から資材調達までのプロセスの一般的なイメージである。受注した機械は、発注企業の仕様に基づいて製造されなければならないため、受注後は、まず設計を行い、次に設計図(Blueprint)に基づいて必要な資材・パーツを洗い出し、サプライヤに発注する流れとなる。ここで、受注した案件は、工事番号(Construction Number)で管理されるが、一つの機械に対して複数の設計図が作成されるため、設計段階では、設計図番号(Blueprint Number)が用いられる。さらに、資材・パーツの洗い出しにはパーツ番号(Parts Number)が、調達時には、複数のパーツがいくつかにまとめられて調達要求が出される。この時は、調達要求番号(Procurement Request Number)が付番される。さらに、複数の調達要求は、サプライヤ毎に集約されて発注が行われる。ここでは発注番号(Order Number)が管理用のIDとなる。

図2 受注から資材調達までのプロセス例(エンジニアリング会社)
1台の機械受注に対して複数のBluleprint、Parts、Procurement Request、Orderが紐づけられ、ひとつの案件IDだけでは適切な分析が行えない

 このように、ひとつの案件が処理されていく中で、集約されたり(Convergence)、拡散したり(Divergence)するプロセスが実務ではごく普通に見られる。従来のアプローチでは、プロセス開始時の工事番号を案件IDとして資材調達までを一気通貫に分析することになるが、途中に集約や拡散が存在していると、実態とはかけ離れたプロセスが再現されてしまう。(例えば、拡散している箇所は単なる繰り返しタスクとして認識されるなど)


 このConvergence/Divergence問題は、プロセスマイニングの分析品質を左右する最大の課題と言える。そこで、近年では、プロセスマイニングのゴッドファーザー、Wil van der Aalst教授が率いる研究者たちが「Object-Centric Process Mining」(1)と称する独自の方法論により当課題の解決に取り組んでいる。 また、myInvenioには、マルチレベルマイニングという機能が実装されており、一つのプロセスについて複数の案件IDを設定することで、プロセスの集約・拡散の状況を加味したフローの再現を実現している。


 今後の進化の方向性

 プロセスマイニングは、データ分析の枠を超えて、業務支援ソリューションとしての役割も果たしつつあることは前述した。ここでは、プロセスマイニングは今後、どのように進化していくのか、俯瞰的な視点で述べてみたい。

3.1 プロセスマイニング1.0

プロセスマイニングは。現状のプロセスをデータから自動再現する「プロセス発見」が基本機能であった。これは、現状をありのままに描きだすという点において「記述的分析(Descriptive Analysis)」である。
ただし、本来やりたいことは、プロセスに潜む非効率性やボトルネックなどの問題個所の抽出である。つまり、どこが悪いのか、を探し出さなければならない。そこで、この部分の処理時間が長すぎる、あるいは繰り返しが多いなど、容易に問題と思われる個所を教えてくれる機能が付加されている。診断的分析(Diagnostic Analysis)に属する機能である。プロセスマイニングツールでは、一般に「根本原因分析(Root Cause Analysis)」と命名されている。
以上は、過去データを対象とする分析機能であり、プロセスマイニング1.0と呼ぶべきものであろう。

図3 プロセスマイニングの進化
プロセスマイニングの機能は、プロセスマイニング1.0から2.0へと大きく進化しつつある

3.2 プロセスマイニング2.0

 プロセスマイニングの分析対象として、未完了、すなわち現在進行中の案件データをリアルタイムに取り込むようになると、逸脱の発見に加えて、現在走っている案件はあとどのくらいで完了しそうなのか、といった所要時間の予測や、将来に発生するかもしれない逸脱の予測も可能になる。こうした予測的分析(Predictive Analysis)が実装されたツールも増えつつある。
 さらには、予測結果に基づいて、所要時間を短縮するために、あるいは将来の逸脱発生を未然に防ぐために、今どのような対応を行うべきかを提案する機能を持つツールも登場しつつある。これは「処方的分析(Prescriptive Analysis)」の機能である。


 こうした未完了データを扱うプロセスマイニング分析は、既存のプロセスマイニング1.0を大きくバージョンアップするものであり、プロセスマイニング2.0と呼ぶことができるであろう。
予測的分析、処方的分析は未成熟であり、その信頼性は必ずしも高いとは言えないが、今後のさらなる技術進展を通じて、ERPなどのエンタープライズシステムに基づく円滑な業務遂行を支援する価値あるソリューションとして多くの企業への導入が進むことは間違いないと思われる。

プロセスマイニングベンダー最新評価レポート2021 – Everest Group PEAK Matrix(R) 2021

evelest

Process Mining Products PEAK Matrix(R) Asessment 2021

ダラスに本社を置くコンサルティング&調査会社のEverest Groupは、2021年6月4日、主要なプロセスマイニングベンダー18社について、以下の2つの軸での市場ポジショニング(山脈に見立てているので「PEAK Matrix」)を発表しました。

プロセスマイニングについてのEverest Peak Matrixは、2020年版につづいて2年目です。

⇒2020年版はこちらから

横軸:Vision & Ability – Measures ability to deliver products successfully
製品開発ビジョンを示し、それに沿った製品を成功裡に提供できる能力

縦軸:Market Impact – Measures impact created in the market
市場に与えるインパクトの強さ

PEAK Matrixでは、競合製品をLeaders(リーダー)、Major Contenders(主要な競争相手)、Aspirant(上を狙う野望を持つ製品)の3つにカテゴライズします。Process Mining市場では、それぞれのカテゴリーに含まれる製品は次の通りです。

Leaders

  • Celonis
  • Software AG
  • Minit
  • UiPath

Major Contenders(アルファベット順)

  • Apromore
  • Everflow
  • LANA Labs
  • Logpickr
  • MEHRWERK GmbH
  • Monkey Mining
  • myInvenio
  • PAF now
  • QPR Software
  • UpFlux
  • Signavio

Aspirants

  • Integris
  • LiveJourney
  • Live Objects

→Matrix図はこちら

2020年版からの主な変化としては、リーダーグループでは、MinitがMajor Contendersから昇格したことが挙げられます。結果、Leadersに位置付けられたベンダーは4社となりました。

Major Contenders、すなわちリーダーグループに闘いを挑んでいる主要な競争ベンダーについては、前回は8社でしたが、今回は11社と増え、さらに競争が激化しています。まだあまり知名度の高くないMonky Miningや、Upfluxが登場。

また、このところ急速に機能を拡張してきたApromoreが前回よりも高い位置まで登っています。

Aspirantsとしても、新興ベンダーと思われますが、Livejourney、Integris、Live Objectsの3社が登場しました。

なお、日本で本格展開しているプロセスマイニングツールは、Celonis、Uipath、myInvenio、Signavio、ABBYY Timelineの5社です。(ABBYY Timelineが、今回のPeak Matrixから除外された理由は今のところ不明)

レポート詳細は以下から入手可能です。(有料)

Process Mining – Technology Vendor Landscape with Products PEAK Matrix(R) Assessment 2021


【速報】SPARK Matrix(TM): Digital Twin of an Organization (DTO) Solution, 2021 – Quadrant Knowledge Solutions

SPARK Matrix(TM): Digital Twin of an Organization (DTO) Solution, 2021

米国の経営コンサルティング会社、Quadrant Knowledge Solution社の市場調査レポート、「SPARK Matrix(TM): Digital Twin of an Organization (DTO) Solution, 2021」が2021年3月3日に公開されました。

Digital Twin of an Organization (DTO) とは?

Digital Twin of an Organization (DTO)は、一般に、「DTO」、または短く「デジタルツイン」と称されます。DTOは、現実のアナログな企業の形態にそっくりな、デジタルの双子の片割れ、言い換えると「レプリカ(複製)」のことです。

DTOは、より具体的には企業の業務プロセスや、組織体制、システム構成などをデジタルデータに基づいてモデル化し、ディスプレイ上で可視化したものです。企業は、DTOを通じて現状を把握し、問題点を発見し、シミュレーションを行うなどして、最適な改善施策を練り、実行に移すことが可能になります。またDTOによるモニタリング(監視)によって、継続的な改善を行うことができます。

SPARK Matrix(TM):Digital Twin of an Organization (DTO) Solution

今回発表されたSPARK Matrixでは、DTOを実現する各種商用ソリューションを比較分析しています。検討対象となったソリューションは合計16種です。SPARK Matrixでは、これらを以下の3つのカテゴリーに分類しています。

・Technology Leader

・Challengers

・Aspirants

そして、Technology Leaderに含まれるソリューション(ベンダー)は、以下の8種となっています。

・Software AG

・Signavio

・Celonis

・myInvenio

・CANEA

・Cosmo Tech

・QualiWare

・QPR Software

なお、上記ベンダーのうち、Software AG、Signavio、Celonis、myInvenio、QPR Softwareは、プロセスマイニングソリューションの代表的なベンダーでもあります。

プロセスマイニングは、DTOを実現する上で不可欠の機能(次項参照)を提供していることから、DTO市場においても高い存在感を示すのは当然でしょう。

DTOを実現する主要機能

当レポートでは、DTOを実現する主要機能として以下を示しています。

・包括的なデータマネジメント – Comprehensive Data Management

・プロセスのモデリングとビジュアル化 – Process Modeling and Visualization

・シミュレーション – Simulation

・高度な分析 – Advanced Analytics

・リアルタイムモニタリング – Real-Time Monitoring

・継続的なフィードバックと改善 – Continuous Feedback and Improvement

・各種システムとの統合と協調 – Integration and Collaboration

オリジナルレポートはこちらから

【速報】プロセスマイニングトレンド2021 – HSPI Process Mining: A Database of Applications 2021

Process Mining trend – Global 2005-2021 by HSPI Process Mining: A Database of Applications 2021

イタリアのITコンサルティングファーム、HSPIが2018年から毎年発行しているプロセスマイニング事例集の2021年版、「Process Mining: A Database of Applications 2021」が2021年1月27日に公開されました。

詳細はオリジナルのレポートをご覧いただくとして、当記事は全体概要としての統計的集計結果をご紹介します。なお、このレポートはプロセスマイニング導入に関わるコンサルティング会社やプロセスマイニングツールのベンダー企業などに案件情報提供を依頼した結果であり、市場全体を代表するものではありません。

プロセスマイニングプロジェクト件数年別推移

年別のプロセスマイニングプロジェクトの実施件数推移を見ます。2019年に報告件数が減少しましたが、2020年は100件を超え、導入企業が着実に増加していることがうかがえます。

case distribution per year 2005-2020

国別プロジェクト件数(構成比)

次に、過去の全案件について国別のプロジェクト件数の構成比を見ます。

プロセスマイニングは1999年にオランダで誕生し、ヨーロッパ各国で研究、および活用がすすんできたこともあり、ヨーロッパが全体の約半数を占めています。

次いで、米国、韓国、オーストラリアと続いています。

米国でのプロセスマイニング普及は日本とほぼ同時期の2018年ころからですが、良いものには躊躇せず飛び付く米企業らしく、急速に普及が進んでいることが推測できます。

韓国では、韓国企業、Puzzle Dataが独自開発したプロセスマイニングツールが市場をほぼ独占しており、積極的にマーケティング&セールス活動を行っていることから、普及が進んでいるようです。

オーストラリアでは、クィーンズランド大学はじめ、プロセスマイニング研究が盛んで、近年はオープンソースツール、Apromoreが商用サービスを開始したことを背景に着実に導入が進んでいます。

日本の案件は最新版でも含まれていませんが、おそらく2020年だけで数十社がPoC、または本格導入したと推測され、仮に本調査に協力したとしたら上位に位置してくるのは間違いないでしょう。


産業別プロジェクト件数(構成比)

産業別にみてプロセスマイニング導入が多いところはどこでしょうか。

以下の円グラフでおわかりのように、「Industrals」が22%と最も多く、次いでFinancialsが17%、「Healthcare」15%、「Telecommunications」10%と続いています。

「Industrials」には、Aerospace & Defence, Automotive & Parts, Construction & Materials, Electronics, General Industrials, Industrial Engineering , Logisticなどの業種が含まれていますが、大規模組織で、複雑なプロセスを抱える企業のプロセスマイニング導入が進んでいることがうかがえます。

case distribution by industry

オリジナルレポートはこちらから

【速報】Gartner, Market Guide for Process Mining 2020

 米ITアドバイザリ企業Gartnerが、2020年版となる『Market Guide for Process Mining』を2020年9月30日に公開しました。

当記事では主なポイントを速報としてお伝えします。

最新版では、プロセスマイニングができること(Capabilities)がバージョンアップされています。具体的には以下の10個です。これらは、各種プロセスマイニングツールがおおむね提供している、あるいは今後提供を目指していると思われる機能とも言えます。


・プロセス、例外処理、案件、そして従業員の関わりについて自動的にモデル(フロー図など)を作成

・カスタマーとのやりとり、カスタマージャーニーを自動的にモデル化すること、および関連分析

・適合性検査、およびギャップ分析

・プロセスモデルの強化(改善)のための追加的分析(属性を付加した分析)

・データ前処理、データクレンジング、ビッグデータへの対応

・意思決定支援を可能にする、KPIの継続的モニタリングのためのリアルタイムダッシュボード

・予測的分析、処方的分析、シナリオ検証、シミュレーション

・プロセスマイニングアプリケーションを作成できるAPIを提供し、また高度な分析と意思決定支援が行える、様々なプロセスにまたがるプロセスマイニング分析のプラットフォーム

・様々な異なるプロセス間のやり取りや、それら複数のプロセスが同じワークステーションや職場、デスクトップPCでどのように実行されているかの分析

・ユーザーインタラクションログ(PC操作ログ)に基づくタスクマイニング分析


また、Gartnerは、プロセスマイニングが採用されるメインドライバーとして以下の4つを挙げています。

・デジタルトランスフォーメーション – Digital Transformation

・人工知能(AI) – Artificial Intelligence

・タスクオートメーション – Task Automation

・ハイパーオートメーション – Hyperautomation

ハイパーオートメーションとは、ひらたく言えば、RPAなどを用いたタスクオートメーション、ワークフローやiBPMSによるプロセスオートメーション、そしてDigitalOpsによる業務オペレーション全体の自動化をチャットボット、スマーとスピーカー、AI、機械学習などの様々なテクノロジーも組み込みながら実現していこうとするものです。


標準的なプロセスマイニングのユースケースとしては以下の5つが挙げられています。なお、アルゴリズムとは、イベントログからプロセスモデルを自動的に描くために、プロセスマイニングツールに組み込まれているものです。

・アルゴリズムによるプロセス発見、分析によるプロセスの改善

・アルゴリズムによるプロセスの比較、分析、検証による監査、コンプライアンスの改善

・自動化の機会の発見と検証によるプロセス自動化の改善

・戦略と業務を結びつけ、柔軟な組織を生み出すことによる、デジタルトランスフォーメーション(DX)の支援

・アルゴリズムによるITプロセスの発見と分析に基づく、IT業務のリソース最適化の改善


2020年版で示されているプロセスマイニングの代表的ベンダー・ツールは以下の20種類です。

 ABBYYTimeline
 ApromoreApromore
 BusinessOptixBusinessOptix
 CelonisCelonis Intelligent Business Cloud Platform
 Cognitive TechnologymyInvenio
 EverFlowEverFlow
 FluxiconDisco
 IntegrisExplora
 Lana LabsLANA Process Mining (Magellanic), LANA Connect (Rockhopper)
 LogpickrLogpickr Process Explorer 360
 MEHRWERKMEHRWERK ProcessMining (MPM)
 MinitMinit
 Process Analytics Factory (PAF)PAFnow
 Process Mining Groups at TUE and RWTHProM, ProM Lite, RapidProM, PM4Py
 Puzzle DataProDiscovery
 QPR SoftwareQPR ProcessAnalyzer
 SignavioSignavio Process Intelligence
 Software AGARIS Process Mining
 StereoLOGICStereoLOGIC 2020
 UiPathUiPath Process Mining, UiPath Task Mining

レポート内容詳細は、『Market Guide for Process Mining』の原文を参照ください。

HFS Top 10 Process Intelligence Products 2020 – プロセスマイニングツールトップ10 (2020)

HFS report on Top 10 Process Intelligence Products

米ITサービス調査会社大手のHFS Researchが、2020年9月、「HFS Top 10 Process Intelligence Products 2020」と題したレポートを発行しました。

HFSでは、40人を超える業界のリーダーたちにインタビューを行い、有望なプロセスインテリジェンス製品として14製品を選出しました。そして、大きくは、「革新(Innovation)」、「実行(Execution)」、「顧客の「声(Voice of the customer)」の3つの切り口で14製品を評価し、ランク付けを行いトップ10を決定しています。

総合評価ランキングは以下の通りです。

1位 Celonis

2位 minit

3位 Fotress IQ

4位 UiPath

5位 KRYON

6位 pafnow

7位 LANA

8位 myInvenio

9位 QPR

10位 ABBYY Timeline

HFSにおける「プロセスインテリジェンス」は、プロセスマイニング、およびタスクマイニングの両方のソリューションを含んでいます。上記トップ10ベンダーのうち、「Fortress IQ」、および「KRYON」は、タスクマイニングソリューションです。

上記プロセスマイニングベンダーのうち、CelonisやmyInvenioは、タスクマイニング機能の拡張を行っています。他のベンダーでも、タスクマイニング機能の拡張を図っているところがあります。

当レポートの詳細はHFSのサイトを参照ください!

→ https://www.hfsresearch.com/research/hfs-top-ten-process-intelligence-products-2020/

ランキング表はこちらから閲覧できます。

プロセスマイニングツール評価レポート – NEAT Report:Process Discovery & Mining 2020 (NelsonHall)

NEAT Evaluation Report: Process Discovery & Mining 2020 by NelsonHall

IT、ビジネスサービス業界を対象とする調査分析会社、NelsonHall社が、プロセスマイニング市場の主要ベンダーについての評価レポート(NEAT: NelsonHall Vendor Envaluation & Assessment Tool)を6月2日に公表しました。

ツールの評価ポジショニングマップを引用することは難しいため、言葉での説明に留めます。ポジショニングマップをご覧になりたい方は、本文末尾の参照元をご覧ください。

さて、ポジショニングマップにおける評価の2次元は、横軸が「将来のクライアント要件に対応する能力」、縦軸は「今すぐのベネフィットを提供できる能力」です。この2軸からポジショニングマップは4象限に区分されています。右上がリーダー、右下がイノベーター、左上がハイアチーバー(高達成者)、左下がメジャープレーヤーの区分です。

評価対象となったベンダーは以下の15社です。各種業務システムから抽出したイベントログを対象とする分析ツールだけでなく、PC操作ログを対象とする分析ソリューションを提供するベンダーも含まれています。このため、Gartnerのプロセスマイニング・マーケットガイドで紹介されている主要ベンダーとは多少違いがあります。

1 ABBYY

2 BusinessOptix

3 Celonis

4 EdgeVerve

5 Kryon

6 Lana Labs,

7 myInvenio

8 NICE Systems

9 Process Diamond

10 QPR Software

11 Signavio

12 Skan

13 Software AG

14 UiPath

15 UpFlux

上記ベンダーのうち、ポジショニングマップのリーダー象限には、Celonis、Software AG、ABBYY、UIPathが位置付けられています。イノベーターには、QPR、Signavio、NICE、ハイアチーバーとしてはmyInvenioが置かれています。

詳細は、NelsonHall社のWebサイト、およびCelonis社のコンテンツをご確認ください。

Process Discovery & Mining 2020 NelsonHall NEAT Analysis

Celonis Named a Leader i NelsonHall NEAT Assessment: Process Mining, Process Discovery, Process Automation, Workforce Automation

プロセスマイニングベンダー最新評価レポート2020 – Everest Group PEAK Matrix(R) 2020

evelest

Process Mining Products PEAK Matrix(R) Asessment 2020

ダラスに本社を置くコンサルティング&調査会社のEverest Groupは、2020年2月26日、主要なプロセスマイニングベンダー13社について、以下の2つの軸での市場ポジショニング(山脈に見立てているので「PEAK Matrix」)を発表しています。

→ 2021年版(2021年6月4日リリース)の速報はこちらから

横軸:Vision & Ability – Measures ability to deliver products successfully
製品開発ビジョンを示し、それに沿った製品を成功裡に提供できる能力

縦軸:Market Impact – Measures impact created in the market
市場に与えるインパクトの強さ

PEAK Matrixでは、競合製品をLeaders(リーダー)、Major Contenders(主要な競争相手)、Aspirant(上を狙う野望を持つ製品)の3つにカテゴライズします。Process Mining市場では、それぞれのカテゴリーに含まれる製品は次の通りです。

Leaders

  • Celonis
  • Software AG
  • UiPath(旧ProcessGold)

Major Contenders(アルファベット順)

  • ABBY Timeline
  • Apromore
  • LANA Labs
  • Logpickr
  • Minit
  • myInvenio
  • PAF now
  • QPR Software

Aspirants

  • Everflow
  • Puzzle Data

→Matrix図はこちら

市場リーダーのCelonisは既に社員数800人を抱え、大型の資金調達にも成功して「ユニコーン」としても認められる存在。そして、リーダーグループの一角を占めるSoftware AGは、「ARIS」のブランドで知られ、「ARIS Process Mining」の販売にも力を入れてきています。また、先ごろ買収したProcessGoldを「UiPath Process Mining」と名称を変え、UiPathが強みを持つRPAを含んだトータルソリューションとして提案力を強化しています。

Major Contender、すなわちリーダーグループに闘いを挑んでいる主要な競争ベンダーはまさに群雄割拠という状況。なお、私が把握している限りですが、日本においてなんらか連絡先があるのは、ABBYY Timeline、LANA Lab、myInvenioの3つだけです。

Aspirantsは、虎視眈々と上を目指してがんばっているベンダーというところでしょうか、韓国で独自開発され、韓国企業での導入実績を増やしているPuzzle Dataが取り上げられているところが興味深いです。

Gatnerの市場ポジショニングマップである「Magic Quadrant」のプロセスマイニング市場版がまだ発表されていない状況( 2020年2月)で、PEAK Matrixは、市場を概観できる良いレポートですね。

レポート詳細は有料となるようですが以下から入手可能です。

Process Mining – Technology Vendor Landscape with Products PEAK Matrix(R) Assessment 2020


プロセスマイニングツール – 日本 Feb2020

Available process mining tools – Japan Feb2020

当記事では、2020年2月時点で、日本において利用可能なプロセスマイニングツールをご紹介します。

留意していただきたいことがあります。「ツールを利用する」ということだけであれば、日本に拠点や代理店がなかったとしても、直接ベンダーに連絡すればライセンス購入可能です。しかし、プロセスマイニングツールは高度で複雑なツールです。「ちょっとお試し」、だったとしても残念ながら、そう簡単には使いこなせません。

そもそも、業務プロセス改善を目的とする「プロセスマイニングソリューション」の観点からは、ツールの操作方法の最低限のトレーニングに加え、データ前処理、分析結果の解釈など、専門性の高い人材が不可欠です。

多くの企業では、自前の人材だけでプロセスマイニングを導入して成果を出すことは難しいと思いますので、日本企業に対して、ツール操作トレーニング、データ前処理支援などのプロフェッショナルサービスを併せて提供してくれる代理店なりコンサルティング会社の存在があるツールのみをここではご紹介します。

とういうわけで、現在日本において、比較検討が可能なプロセスマイニングツールは以下の4つです。なお、以下は公開された情報に基づいています。ここに掲載がなく、「当社のツールも日本での販売開始してます」「うちも代理店として扱ってるよ」という会社様はお知らせください。

セロニス(Celonis)

日本法人あり。アビームコンサルティングなど、大手コンサルティング会社とグローバルなアライアンス契約を結んでいる。日本語ローカライズ済。

→ Celonis

マイインベニオ(myInvenio) 

独占販売契約を結んでいるハートコアがライセンス販売に加え、トレーニングをはじめ、各種プロフェショナルサービスを提供。日本語ローカライズ済。

→ ハートコア株式会社(日本総代理店)

シグナビオ(Signavio)

イントラマート社が、Signavio Process Miningを活用した「DXアプローチメソッド」を提供。日本語ローカライズ済。

→ 株式会社NTTデータ イントラマート(パートナー契約)

アビー・タイムライン(ABBYY Timeline)

OCR製品で知られるABBYY社が提供するプロセスマイニングツールです。日本語ローカライズ済。

→ ABBYY 日本

ラナ・プロセスマイニング(LANA Process Mining) 

リグリット・パートナーズが、ラナ・プロセスマイニングを活用した「オペレーションアセスメントサービス」を提供。日本語ローカライズ済。

→ 株式会社リグリット・パートナーズ(パートナー契約)

プロセスマイニングツール – グローバル Feb2020

Process mining tools – global Feb2020

現在、世界にはどんなプロセスマイニングツールがあるのか概観してみましょう。

2019年の時点で、大小合わせて30以上のプロセスマイニングツールが世界には存在していると考えられます。 米ITアドバイザリ企業Gartnerが2019年6月に発表した、『Gartner, Market Guide for Process Mining, Marc Kerremans, 17 Jun 2019』においては、代表的なベンダー・ツールが19種類挙げられています。

  • Apromore – Apromore
  • Celonis – Celonis Process Mining
  • Cognitive Technology – myInvenio
  • Everflow – Everflow
  • Fluxicon – Disco
  • INTEGRIS Explora
  • Lana Labs – LANA Process Mining – Magellanic
  • Logpickr – Logpickr Process Explorer 360
  • Mehrwerk AG – MEHERWERK ProcessMining (MPM)
  • Minit – Minit
  • Process Anaytics Factory – PAFnow
  • Process Mining Groups at TUE and RWTH – ProM, ProM Lite, RapidProm M, PM4Py
  • Process Gold – ProcessGold
  • Puzzle Data – ProDiscovery
  • QPR Software – QPR ProcesAnalyzer
  • Signavio – Signavio Process Intelligence
  • Software AG – ARIS Process Mining
  • StereoLOGIC – StereoLogic Process Analysis
  • TimelinePI – Process Intelligence Platform *2019年にABBYY社が買収

さて、これらのうち、グローバルなマーケティング&セールス活動に積極的と感じられ、Webサイトを通じて有益な情報を提供しているとして、私が日ごろからチェックしているのは、以下の10のツール・ベンダーです。

プロセスマイニングはまだ新しい市場であるため、ベンダー各社のライセンス販売本数や売上もほとんどが非公開、調査会社による市場シェア等は当てになりません。とはいえ、Celonisが市場リーダーであることは間違いなく、2番手にCognitive Technology、さらにLana Labs、ProcessGold、 Minitなどがそれぞれがんばっているという状況だと推測しています。

ユニークな存在としては、オープンソースのApromoreが挙げられます。同じくオープンソースのProMは主に学術的研究に利用されているのに対し、Apromoreは企業での活用も増えており、大規模ユーザーへの有償版の提供も始まっています。

なお、ProcessGoldは、2019年末、RPAベンダーのUiPathに買収され、同社の製品ラインアップのひとつとして販売される形となりました。このため、2020年3月に、「UiPath Process Mining」という名称に変更されています。

プロセスマイニングトレンド – グローバル 2005-2019

Process mining trend – global 2005-2019

日本では2019年初頭から本格展開が始まったプロセスマイニング。2020年は、本格導入する日本企業が続々と登場しそうな状況です。

さて、1990年代末に欧州・オランダで生まれたプロセスマイニングですが、2010年代から普及が本格化し、2018年以降はRPAに続くITトレンドとしてブームの様相を呈しています。

プロセスマイニング市場はまだまだ新しいため、市場全体を把握できるデータや資料がほとんど存在しません。そんな中、イタリアのITコンサルティング会社、「HSPI Management Consulting」が2018年から毎年発行している「Process Mining: A DATABASE OF APPLICATION」は、プロセスマイニングプロジェクト件数ベースでの概要を伝えてくれる貴重な調査資料です。

当記事では、上記調査資料の最新版、2020 Edition(2020年1月20日公開)の一部をご紹介します。なお、以下に示すデータは、世界各国のプロセスマイニングツールベンダーや、プロセスマイニング導入を支援するコンサルティング会社等に協力を仰ぎ、任意に提出された過去のプロジェクトの件数や概要に基づくものです。調査に協力していないベンダー、コンサルティング会社等のプロジェクトはカウントされていない点にご留意ください。

年別プロジェクト件数推移

まずは、年別のプロセスマイニングのプロジェクト件数の推移を見ましょう。以下のグラフからわかるように、2011年からの伸びがめざましく、2019年は100件に届こうとする勢いです。昨年2019年は75件と減少していますが、HSPIによれば今回の調査時期が2019年秋だったため、未完了プロジェクト分がレポートされたためだろうと述べています。2021年版で明らかになりますが、実際には、2019年の年間プロジェクト件数は100件を大きく超えていると思われます。

産業別プロジェクト件数

次に、2005-2019年の総プロジェクト件数551件の産業別の内訳を見てみましょう。最も多いのは、航空、自動車、建設、物流などの業界で21%。航空業界だと、エアバス、ルフトハンザ航空、また自動車業界では、BMW、PSI、フェラーリ、ポルシェなどがプロセスマイニングに取り組んでいることが知られています。

次いで、「銀行・保険」で17%。様々な手続きに係る社内業務が煩雑であることから、コスト削減余地が大きい業界だからでしょうか。

3位につけているのは「医療・医薬」で16%です。プロセスマイニングは、初期の頃、病院での医療行為(医療検査など)への適用事例が多く報告されていますが、近年は製薬会社での導入も進んでいます。

地域・国別プロジェクト件数

地域・国別のプロジェクトの構成比については簡潔に触れるに留めます。プロセスマイニング発祥の地、欧州が最も多く37.9%を占めています。次いで、米国5.0%、ブラジル4.0%、オーストラリア38%と続いています。

プロジェクト対象プロセス・目的

この調査資料は、DATABASE OF APPLICATIONとあるように、各プロジェクトについて、企業名(匿名の場合もある)、業種、プロジェクト概要が収録されています。簡潔なプロジェクト説明ですので詳細はもちろん推測するしかないのですが、価値ある事例集だと言えます。

2019年の最新事例をざっと眺めてみると、従来から多かった購買プロセス(P2P: Procure to Pay)、受注プロセス(O2C: Order to Cash)や、ヘルプデスクのITSMプロセス以外の多様なプロセスへと適用が広がっているのがわかります。また、RPAによる自動化を目的に、タスクレベル分析、すなわちタスクマイニングの事例もいくつか登場していることが特筆できるでしょう。

当調査資料(PDF)は、無料でダウンロードできます。

→ Process Mining: A DATABASE OF APPLICATIONS 2020 Edition (HSPI)