プロセスマイニングとデータマイニング・AI、BPMとの関係

How process mining can relate to data mining, AI and BPM.

プロセスマイニングと密接な関係がある隣接分野があります。ひとつはデータマイニング・AI、もうひとつはBPM(Business Process Management)です。

今回は、どのように関係があるのかを簡単にご説明しましょう。

まずは「データマイニング・AI」とは何かから説明します。データマイニングは、基本的にビッグデータを対象とした分析手法であり、その主な目的はものごとの因果関係や典型的なパターンのような「法則性」を発見して、様々な意思決定に役立てることです。

例えば、各地の気温、湿度などの天候情報を大量に収集し、データマイニングでそのデータを分析することで、どのような状況において晴天になりやすいのか、それとも雨天になりやすいのかの予測式がつくられ、天気予報に活用されています。

データマイニングでは、数十年前から活用されてきた「多変量解析」の手法、例えば、回帰分析や、クラスター分析、決定木分析に加え、近年は主にニューラルネットワークによるディープラーニングが飛躍的な進歩を遂げ、ものごとを判別したり、予測する精度が大きく向上しています。一般に、これらの分析手法のことは「AI(Artificial Intelligence:人工知能)」と呼ばれますが、AIはデータマイニングにおいて頻繁に利用される手法なので、当記事では「データマイニング・AI」と一括りにしています。

さて、データマイニングはあらゆる分野のあらゆるビッグデータを分析対象としますが、基本的に「プロセス」を対象とはしてきませんでした。ある瞬間、すなわちスナップショット的な静的なデータを抽出して、要約したり、分類したり、因果関係を見出してきたりしたのです。

一方、プロセスマイニングは、文字通り、時系列のひとつながりになった動的なデータから、プロセスの流れを描き出すこと、すなわち「プロセスモデル」を作成することが基本にあります。もちろん、プロセス処理件数や処理時間など、プロセスに関わる静的な各種統計量も併せて算出する点は、データマイニングと共通しています。

こう考えると、データマイニングとプロセスマイニングは、分析手法としては兄弟分のようなものです。(どちらにも「マイニング」という言葉が含まれていますし)

ただ、プロセスマイニングを主体に考えると、プロセスに関わる様々な分析を深めていくうえで、データマイニング、AIの手法が応用されています。例えば、現在処理中の案件(ランニングケース)の終了までのリードタイムを推測するためには、データマイニングにおける「予測分析」が採用されています。

それ以外にも、必要に応じて、クラスター分析や決定木分析などが活用可能であり、今後も、プロセスマイニングツールとしての分析の幅や精度を高めるためにデータマイニングの手法がプロセスマイニングに取り入れられていくと考えられます。

では次に、BPM(BPM)について考えてみましょう。BPMはシンプルにいえば、プロセスを改善することを目的として、プロセスの現状を分析し、問題点を解消するto beプロセスを設計し、現場に展開・監視を行う一連の活動です。

このBPMの活動のうち、とりわけ「現状分析」において、プロセスマイニングの基本アプローチのひとつ、「プロセス発見」は役立ちますし、その後の設計、展開、監視においても、プロセスマイニングが提供できる「適合性検査」、「プロセス強化」のアプローチはBPMにとって強力な武器となりえます。

このように、プロセスマイニングとデータマイニング・AI、BPMはお互いに補完しあえる関係にあると言えます。プロセスマイニングのゴッドファーザー、Wil van der Aalst教授は、「プロセスマイニングは、データマイニングとBPMをつなぐ橋である」と述べられていますが、まさに、BPMの取り組みにおいて、プロセスに特化したデータマイニングとしての「プロセスマイニング」は大きな役割を果たしていくと思われます。